A Note on the 2F1 Hypergeometric Function
نویسنده
چکیده
The special case of the hypergeometric function 2F1 represents the binomial series (1 + x) = ∑∞ n=0 ( α n ) xn that always converges when |x| < 1. Convergence of the series at the endpoints, x = ±1, depends on the values of α and needs to be checked in every concrete case. In this note, using new approach, we reprove the convergence of the hypergeometric series for |x| < 1 and obtain new result on its convergence at point x = −1 for every integer α 0, that is we prove it for the function 2F1(α, β; β; x). The proof is within a new theoretical setting based on a new method for reorganizing the integers and on the original regular method for summation of divergent series.
منابع مشابه
ON AN EXTENSION OF A QUADRATIC TRANSFORMATION FORMULA DUE TO GAUSS
The aim of this research note is to prove the following new transformation formula begin{equation*} (1-x)^{-2a},_{3}F_{2}left[begin{array}{ccccc} a, & a+frac{1}{2}, & d+1 & & \ & & & ; & -frac{4x}{(1-x)^{2}} \ & c+1, & d & & end{array}right] \ =,_{4}F_{3}left[begin{array}{cccccc} 2a, & 2a-c, & a-A+1, & a+A+1 & & \ & & & & ; & -x \ & c+1, & a-A, & a+A & & end{array} right], end{equation*} wher...
متن کاملA Note on the Hypergeometric Mean Value
in terms of power means and other related means have precipitated the search for similar bounds for the more general 2F1(α, β; γ; r). In an early paper, B. C. Carlson considered the approximation of the hypergeometric mean values ( 2F1(−a, b; b + c; r)) in terms of means of order t, given by Mt(s, r) := {(1 − s) + s(1 − r)t}1/t. In this note, a refinement of one such approximation is establishe...
متن کاملNoncommutative Hypergeometric and Basic Hypergeometric Equations
Recently, J. A. Tirao [Proc. Nat. Acad. Sci. 100 (14) (2003), 8138–8141] considered a matrix-valued analogue of the 2F1 Gauß hypergeometric function and showed that it is the unique solution of a matrix-valued hypergeometric equation analytic at z = 0 with value I, the identity matrix, at z = 0. We give an independent proof of Tirao’s result, extended to the more general setting of hypergeometr...
متن کاملA Generalization of Euler’s Hypergeometric Transformation
Euler’s two-term transformation formula for the Gauss hypergeometric function 2F1 is extended to hypergeometric functions of higher order. The generalized two-term transformation follows from the theory of Fuchsian differential equations with accessory parameters, although it also has a combinatorial proof. Unusually, it constrains the hypergeometric function parameters algebraically and not li...
متن کاملThree Adventures: Symbolically Discovered Identities for Zeta(4n+3) and like Matters
I will describe three sets of results in which computer search and computer algebra played a large role in the discovery/and or proof of results each ultimately relating to hypergeometric functions. 1. Ap ery: A generating function for (4n+3). 2. Ramanujan: Integrals, means and transformations of the hypergeometric function 2F1(1=3;2=3;1; 1 x): 3. Euler: Multivalued {function values and a produ...
متن کامل